Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(2): 101224, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38516690

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous malignancy that requires further therapeutic improvement, especially for the elderly and for subgroups with poor prognosis. A recently discovered T cell receptor (TCR) targeting mutant nucleophosmin 1 (ΔNPM1) presents an attractive option for the development of a cancer antigen-targeted cellular therapy. Manufacturing of TCR-modified T cells, however, is still limited by a complex, time-consuming, and laborious procedure. Therefore, this study specifically addressed the requirements for a scaled manufacture of ΔNPM1-specific T cells in an automated, closed, and good manufacturing practice-compliant process. Starting from cryopreserved leukapheresis, 2E8 CD8-positive T cells were enriched, activated, lentivirally transduced, expanded, and finally formulated. By adjusting and optimizing culture conditions, we additionally reduced the manufacturing time from 12 to 8 days while still achieving a clinically relevant yield of up to 5.5E9 ΔNPM1 TCR-engineered T cells. The cellular product mainly consisted of highly viable CD8-positive T cells with an early memory phenotype. ΔNPM1 TCR CD8 T cells manufactured with the optimized process showed specific killing of AML in vitro and in vivo. The process has been implemented in an upcoming phase 1/2 clinical trial for the treatment of NPM1-mutated AML.

2.
Eur J Immunol ; 52(11): 1819-1828, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36189878

RESUMO

Anti-viral T-cell responses are usually directed against a limited set of antigens, but often contain many T cells expressing different T-cell receptors (TCRs). Identical TCRs found within virus-specific T-cell populations in different individuals are known as public TCRs, but also TCRs highly-similar to these public TCRs, with only minor variations in amino acids on specific positions in the Complementary Determining Regions (CDRs), are frequently found. However, the degree of freedom at these positions was not clear. In this study, we used the HLA-A*02:01-restricted EBV-LMP2FLY -specific public TCR as model and modified the highly-variable position 5 of the CDR3ß sequence with all 20 amino acids. Our results demonstrate that amino acids at this particular position in the CDR3ß region of this TCR are completely inter-changeable, without loss of TCR function. We show that the inability to find certain variants in individuals is explained by their lower recombination probability rather than by steric hindrance.


Assuntos
Aminoácidos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta
3.
Front Immunol ; 13: 851868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401538

RESUMO

Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 epitopes of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.


Assuntos
Infecções por Vírus Epstein-Barr , Citomegalovirus , Herpesvirus Humano 4 , Humanos , Receptores de Antígenos de Linfócitos T , Linfócitos T
4.
Front Immunol ; 13: 831822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251023

RESUMO

In the context of HLA-DP-mismatched allogeneic stem cell transplantation, mismatched HLA-DP alleles can provoke profound allo-HLA-DP-specific immune responses from the donor T-cell repertoire leading to graft-versus-leukemia effect and/or graft-versus-host disease in the patient. The magnitude of allo-HLA-DP-specific immune responses has been shown to depend on the specific HLA-DP disparity between donor and patient and the immunogenicity of the mismatched HLA-DP allele(s). HLA-DP peptidome clustering (DPC) was developed to classify the HLA-DP molecules based on similarities and differences in their peptide-binding motifs. To investigate a possible categorization of HLA-DP molecules based on overlap of presented peptides, we identified and compared the peptidomes of the thirteen most frequently expressed HLA-DP molecules. Our categorization based on shared peptides was in line with the DPC classification. We found that the HLA-DP molecules within the previously defined groups DPC-1 or DPC-3 shared the largest numbers of presented peptides. However, the HLA-DP molecules in DPC-2 segregated into two subgroups based on the overlap in presented peptides. Besides overlap in presented peptides within the DPC groups, a substantial number of peptides was also found to be shared between HLA-DP molecules from different DPC groups, especially for groups DPC-1 and -2. The functional relevance of these findings was illustrated by demonstration of cross-reactivity of allo-HLA-DP-reactive T-cell clones not only against HLA-DP molecules within one DPC group, but also across different DPC groups. The promiscuity of peptides presented in various HLA-DP molecules and the cross-reactivity against different HLA-DP molecules demonstrate that these molecules cannot be strictly categorized in immunogenicity groups.


Assuntos
Doença Enxerto-Hospedeiro , Antígenos HLA-DP , Efeito Enxerto vs Leucemia , Humanos , Peptídeos , Linfócitos T
5.
J Infect Dis ; 226(5): 833-842, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32808978

RESUMO

BACKGROUND: Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs) is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV antigens (LMP1/2). Patients who are HLA-A*01:01 positive could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS: HLA-A*01:01-restricted EBV-LMP2-specific T cells were isolated using peptide major histocompatibility complex (pMHC) tetramers. Functionality was assessed by production of interferon gamma (IFN-γ) and cytotoxicity when stimulated with EBV-LMP2-expressing cell lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCRs of primary T cells (∆TCR) using CRISPR-Cas9 technology. RESULTS: EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene transfer in primary T cells resulted in specific pMHC tetramer binding and reactivity against EBV-LMP2-expressing cell lines. The mean fluorescence intensity of pMHC-tetramer binding was increased 1.5-2 fold when the endogenous TCRs of CD8+ T cells was knocked out. CD8+/∆TCR T cells modified to express EBV-LMP2-specific TCRs showed IFN-γ secretion and cytotoxicity toward EBV-LMP2-expressing malignant cell lines. CONCLUSIONS: We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene therapy to treat EBV-associated latency type II/III malignancies.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos HLA-A , Herpesvirus Humano 4 , Receptores de Antígenos de Linfócitos T , Proteínas da Matriz Viral , Humanos , Interferon gama , Receptores de Antígenos de Linfócitos T/genética , Proteínas da Matriz Viral/imunologia
6.
Front Immunol ; 12: 630440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854504

RESUMO

T-cell products derived from third-party donors are clinically applied, but harbor the risk of off-target toxicity via induction of allo-HLA cross-reactivity directed against mismatched alleles. We used third-party donor-derived virus-specific T cells as model to investigate whether virus-specificity, HLA restriction and/or HLA background can predict the risk of allo-HLA cross-reactivity. Virus-specific CD8pos T cells were isolated from HLA-A*01:01/B*08:01 or HLA-A*02:01/B*07:02 positive donors. Allo-HLA cross-reactivity was tested using an EBV-LCL panel covering 116 allogeneic HLA molecules and confirmed using K562 cells retrovirally transduced with single HLA-class-I alleles of interest. HLA-B*08:01-restricted T cells showed the highest frequency and diversity of allo-HLA cross-reactivity, regardless of virus-specificity, which was skewed toward multiple recurrent allogeneic HLA-B molecules. Thymic selection for other HLA-B alleles significantly influenced the level of allo-HLA cross-reactivity mediated by HLA-B*08:01-restricted T cells. These results suggest that the degree and specificity of allo-HLA cross-reactivity by T cells follow rules. The risk of off-target toxicity after infusion of incompletely matched third-party donor-derived virus-specific T cells may be reduced by selection of T cells with a specific HLA restriction and background.


Assuntos
Antígenos HLA/imunologia , Linfócitos T/imunologia , Vírus/imunologia , Alelos , Reações Cruzadas , Citomegalovirus/imunologia , Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 4/imunologia , Teste de Histocompatibilidade , Humanos , Imunoterapia Adotiva , Células K562 , Doadores de Tecidos
7.
Front Immunol ; 11: 1804, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973756

RESUMO

Graft-vs.-leukemia (GVL) reactivity after HLA-matched allogeneic stem cell transplantation (alloSCT) is mainly mediated by donor T cells recognizing minor histocompatibility antigens (MiHA). If MiHA are targeted that are exclusively expressed on hematopoietic cells of recipient origin, selective GVL reactivity without severe graft-vs.-host-disease (GVHD) may occur. In this phase I study we explored HA-1H TCR gene transfer into T cells harvested from the HA-1H negative stem-cell donor to treat HA-1H positive HLA-A*02:01 positive patients with high-risk leukemia after alloSCT. HA-1H is a hematopoiesis-restricted MiHA presented in HLA-A*02:01. Since we previously demonstrated that donor-derived virus-specific T-cell infusions did not result in GVHD, we used donor-derived EBV and/or CMV-specific T-cells to be redirected by HA-1H TCR. EBV and/or CMV-specific T-cells were purified, retrovirally transduced with HA-1H TCR, and expanded. Validation experiments illustrated dual recognition of viral antigens and HA-1H by HA-1H TCR-engineered virus-specific T-cells. Release criteria included products containing more than 60% antigen-specific T-cells. Patients with high risk leukemia following T-cell depleted alloSCT in complete or partial remission were eligible. HA-1H TCR T-cells were infused 8 and 14 weeks after alloSCT without additional pre-conditioning chemotherapy. For 4/9 included patients no appropriate products could be made. Their donors were all CMV-negative, thereby restricting the production process to EBV-specific T-cells. For 5 patients a total of 10 products could be made meeting the release criteria containing 3-280 × 106 virus and/or HA-1H TCR T-cells. No infusion-related toxicity, delayed toxicity or GVHD occurred. One patient with relapsed AML at time of infusions died due to rapidly progressing disease. Four patients were in remission at time of infusion. Two patients died of infections during follow-up, not likely related to the infusion. Two patients are alive and well without GVHD. In 2 patients persistence of HA-1H TCR T-cells could be illustrated correlating with viral reactivation, but no overt in-vivo expansion of infused T-cells was observed. In conclusion, HA-1H TCR-redirected virus-specific T-cells could be made and safely infused in 5 patients with high-risk AML, but overall feasibility and efficacy was too low to warrant further clinical development using this strategy. New strategies will be explored using patient-derived donor T-cells isolated after transplantation transduced with HA-1H-specific TCR to be infused following immune conditioning.


Assuntos
Doença Enxerto-Hospedeiro/terapia , Efeito Enxerto vs Leucemia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Herpesvirus Humano 4/imunologia , Imunoterapia Adotiva , Leucemia/cirurgia , Antígenos de Histocompatibilidade Menor/imunologia , Oligopeptídeos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Adulto , Idoso , Feminino , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas/mortalidade , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/mortalidade , Leucemia/genética , Leucemia/imunologia , Leucemia/metabolismo , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Países Baixos , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Fatores de Tempo , Transplante Homólogo , Resultado do Tratamento
8.
Blood ; 136(4): 455-467, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32483595

RESUMO

Tumor-associated antigens (TAAs) are monomorphic self-antigens that are proposed as targets for immunotherapeutic approaches to treat malignancies. We investigated whether T cells with sufficient avidity to recognize naturally overexpressed self-antigens in the context of self-HLA can be found in the T-cell repertoire of healthy donors. Minor histocompatibility antigen (MiHA)-specific T cells were used as a model, as the influence of thymic selection on the T-cell repertoire directed against MiHA can be studied in both self (MiHApos donors) and non-self (MiHAneg donors) backgrounds. T-cell clones directed against the HLA*02:01-restricted MiHA HA-1H were isolated from HA-1Hneg/HLA-A*02:01pos and HA-1Hpos/HLA-A*02:01pos donors. Of the 16 unique HA-1H-specific T-cell clones, five T-cell clones derived from HA-1Hneg/HLA-A*02:01pos donors and one T-cell clone derived from an HA-1Hpos/HLA-A*02:01pos donor showed reactivity against HA-1Hpos target cells. In addition, in total, 663 T-cell clones (containing at least 91 unique clones expressing different T-cell receptors) directed against HLA*02:01-restricted peptides of TAA WT1-RMF, RHAMM-ILS, proteinase-3-VLQ, PRAME-VLD, and NY-eso-1-SLL were isolated from HLA-A*02:01pos donors. Only 3 PRAME-VLD-specific and one NY-eso-1-SLL-specific T-cell clone provoked interferon-γ production and/or cytolysis upon stimulation with HLA-A*02:01pos malignant cell lines (but not primary malignant samples) naturally overexpressing the TAA. These results show that self-HLA-restricted T cells specific for self-antigens such as MiHA in MiHApos donors and TAAs are present in peripheral blood of healthy individuals. However, clinical efficacy would require highly effective in vivo priming by peptide vaccination in the presence of proper adjuvants or in vitro expansion of the low numbers of self-antigen-specific T cells of sufficient avidity to recognize endogenously processed antigen.


Assuntos
Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Antígeno HLA-A2/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Linfócitos T Citotóxicos/imunologia , Humanos , Interferon gama/imunologia , Peptídeos/imunologia
9.
Leukemia ; 34(3): 831-844, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31624377

RESUMO

Prophylactic infusion of selected donor T cells can be an effective method to restore specific immunity after T-cell-depleted allogeneic stem cell transplantation (TCD-alloSCT). In this phase I/II study, we aimed to reduce the risk of viral complications and disease relapses by administrating donor-derived CD8pos T cells directed against cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus antigens, tumor-associated antigens (TAA) and minor histocompatibility antigens (MiHA). Twenty-seven of thirty-six screened HLA-A*02:01pos patients and their CMVpos and/or EBVpos donors were included. Using MHC-I-Streptamers, 27 T-cell products were generated containing a median of 5.2 × 106 cells. Twenty-four products were administered without infusion-related complications at a median of 58 days post alloSCT. No patients developed graft-versus-host disease during follow-up. Five patients showed disease progression without coinciding expansion of TAA/MiHA-specific T cells. Eight patients experienced CMV- and/or EBV-reactivations. Four of these reactivations were clinically relevant requiring antiviral treatment, of which two progressed to viral disease. All resolved ultimately. In 2/4 patients with EBV-reactivations and 6/8 patients with CMV-reactivations, viral loads were followed by the expansion of donor-derived virus target-antigen-specific T cells. In conclusion, generation of multi-antigen-specific T-cell products was feasible, infusions were well tolerated and expansion of target-antigen-specific T cells coinciding viral reactivations was illustrated in the majority of patients.


Assuntos
Neoplasias Hematológicas/terapia , Transplante de Células-Tronco , Linfócitos T/imunologia , Infecções por Adenoviridae/prevenção & controle , Adulto , Idoso , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/citologia , Infecções por Citomegalovirus/prevenção & controle , Infecções por Vírus Epstein-Barr/prevenção & controle , Estudos de Viabilidade , Feminino , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/imunologia , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/imunologia , Segurança do Paciente , Transplante Homólogo
10.
J Immunol ; 200(6): 2199-2208, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29427418

RESUMO

Alemtuzumab (ALM) is used for T cell depletion in the context of allogeneic hematopoietic stem cell transplantation (alloSCT) to prevent acute graft-versus-host disease and graft rejection. Following ALM-based T cell-depleted alloSCT, relatively rapid recovery of circulating T cells has been described, including T cells that lack membrane expression of the GPI-anchored ALM target Ag CD52. We show, in a cohort of 89 human recipients of an ALM-based T cell-depleted alloSCT graft, that early lymphocyte reconstitution always coincided with the presence of large populations of T cells lacking CD52 membrane expression. In contrast, loss of CD52 expression was not overt within B cells or NK cells. We show that loss of CD52 expression from the T cell membrane resulted from loss of GPI anchor expression caused by a highly polyclonal mutational landscape in the PIGA gene. This polyclonal mutational landscape in the PIGA gene was also found in CD52- T cells present at a low frequency in peripheral blood of healthy donors. Finally, we demonstrate that the GPI-/CD52- T cell populations that arise after ALM-based T cell-depleted alloSCT contain functional T cells directed against multiple viral targets that can play an important role in immune protection early after ALM-based T cell-depleted transplantation.


Assuntos
Alemtuzumab/farmacologia , Antígeno CD52/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mutação/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Adulto , Linfócitos B/imunologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Células Matadoras Naturais/imunologia , Depleção Linfocítica/métodos , Taxa de Mutação
11.
Cytotherapy ; 20(4): 543-555, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29449085

RESUMO

BACKGROUND: Adoptive transfer of donor-derived T cells can be applied to improve immune reconstitution in immune-compromised patients after allogeneic stem cell transplantation. The separation of beneficial T cells from potentially harmful T cells can be achieved by using the major histocompatibility complex (MHC) I-Streptamer isolation technology, which has proven its feasibility for the fast and pure isolation of T-cell populations with a single specificity. We have analyzed the feasibility of the simultaneous isolation of multiple antigen-specific T-cell populations in one procedure by combining different MHC I-Streptamers. METHODS: First, the effect of combining different amounts of MHC I-Streptamers used in the isolation procedure on the isolation efficacy of target antigen-specific T cells and on the number of off-target co-isolated contaminating cells was assessed. The feasibility of this approach was demonstrated in large-scale validation procedures targeting both high and low frequent T-cell populations using the Good Manufacturing Practice (GMP)-compliant CliniMACS Plus device. RESULTS: T-cell products targeting up to 24 different T-cell populations could be isolated in one, simultaneous MHC I-Streptamer procedure, by adjusting the amount of MHC I- Streptamers per target antigen-specific T-cell population. Concurrently, the co-isolation of potentially harmful contaminating T cells remained below our safety limit. This technology allows the reproducible isolation of high and low frequent T-cell populations. However, the expected therapeutic relevance of direct clinical application without in vitro expansion of these low frequent T-cell populations is questionable. DISCUSSION: This study provides a feasible, fast and safe method for the generation of highly personalized MHC I-Streptamer isolated T-cell products for adoptive immunotherapy.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Separação Imunomagnética/métodos , Leucaférese/métodos , Leucócitos Mononucleares/citologia , Oligopeptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Subpopulações de Linfócitos T/citologia , Células Cultivadas , Citomegalovirus/imunologia , Estudos de Viabilidade , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe I/química , Humanos , Imunoterapia Adotiva , Leucócitos Mononucleares/classificação , Leucócitos Mononucleares/imunologia , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Subpopulações de Linfócitos T/classificação , Linfócitos T/classificação , Linfócitos T/citologia , Linfócitos T/imunologia , Doadores de Tecidos
12.
Sci Transl Med ; 6(254): 254ra128, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232180

RESUMO

Anti-CTLA-4 treatment improves the survival of patients with advanced-stage melanoma. However, although the anti-CTLA-4 antibody ipilimumab is now an approved treatment for patients with metastatic disease, it remains unknown by which mechanism it boosts tumor-specific T cell activity. In particular, it is unclear whether treatment amplifies previously induced T cell responses or whether it induces new tumor-specific T cell reactivities. Using a combination ultraviolet (UV)-induced peptide exchange and peptide-major histocompatibility complex (pMHC) combinatorial coding, we monitored immune reactivity against a panel of 145 melanoma-associated epitopes in a cohort of patients receiving anti-CTLA-4 treatment. Comparison of pre- and posttreatment T cell reactivities in peripheral blood mononuclear cell samples of 40 melanoma patients demonstrated that anti-CTLA-4 treatment induces a significant increase in the number of detectable melanoma-specific CD8 T cell responses (P = 0.0009). In striking contrast, the magnitude of both virus-specific and melanoma-specific T cell responses that were already detected before start of therapy remained unaltered by treatment (P = 0.74). The observation that anti-CTLA-4 treatment induces a significant number of newly detected T cell responses-but only infrequently boosts preexisting immune responses-provides strong evidence for anti-CTLA-4 therapy-enhanced T cell priming as a component of the clinical mode of action.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/imunologia , Imunoterapia , Melanoma/terapia , Anticorpos Monoclonais/imunologia , Humanos , Ipilimumab , Melanoma/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...